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This paper presents finite-element methods to approximate both inviscid and viscous 
incompressible flow problems. First one introduces general ideas and a scheme is presented 
for inviscid flow using discontinuous finite elements which allow a precise definition of 
upwind derivatives. It is then shown that such a scheme can be extended to viscous flow if 
the viscosity terms are treated through mixed finite elements. We give numerical results 
that show that this approach enables to compute at fairly large Reynolds number with 
reasonable accuracy. A complete error analysis is up to now out of reach, but we give 
results on model problems to get at least an intuitive view of the quality of the method 
proposed. 

1. INTRODUCTIOK 

Numerical fluid dynamics is, by no doubt, one of the most difficult topics of 
numerical analysis. Among the problems that are to be faced, the hardest to handle 
is probably to simulate efficiently the behavior of fluids when viscosity becomes small 
or more exactly when the Reynolds number becomes large. To fix up ideas, let us 
write the Navier-Stokes equations in nondimensional form for an incompressible 
fluid. 

Let (z+ , u2, us} be the velocity vector and p the static pressure. We then have to 
solve 

(1.1’ 

with appropriate initial and boundary conditions. 
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114 FORTIN AND THOMASSET 

The Reynolds number Re that appears in (1.1) may generally be written in the 
form, 

Re = Udlv, (1.3) 

where U and dare reference velocity and length and v is the kinematic viscosity. 
In many physically interesting situations, Re may be large (say 105, for instance). 

For such a case, (1.1) is clearly dominated by its nonlinear hyperbolic part, except 
in boundary layers, where the gradient of velocity is large, thus enabling viscosity 
to play a role. Furthermore, large Reynolds numbers are likely to mean the appearance 
of turbulent solutions, which may be loosely described as unstable and to a certain 
extent random. 

In either case, the size of the physical phenomena that are to be simulated becomes 
exceedingly small with respect to any possible discretization grid, even on the largest 
computers available and even foreseeable. Moreover, it is clear that any numerical 
solution that merely ignores those phenomena can only be considered as meaningless. 

We shall not, in this paper, try to modelize turbulent flows. However, we shall 
state, in place, how our method might be adapted to such a model, at least in the 
frame of modeling turbulence through an additional (nonlinear) dissipative term. 

We shall then try to take into account boundary layers, replacing them by dis- 
continuities. This may be acceptable from a large-scale point of view. We shall then 
have to develop a numerical scheme allowing a discontinuous solution. Viscosity will 
then be introduced using mixed finite elements. It will act as a friction factor limiting 
the appearance and size of discontinuities and feeding in dissipation whenever a 
discontinuity develops. 

2. PRECISE PROBLEM DEFINITION 

In order to get a finite-elements approximation of flow problems, we first have to 
define a variational formulation for these problems. We shall treat, here, homogeneous 
boundary conditions, in order to avoid technical difficulties, that anyway present no 
problems is numerical computation. We use throughout the standard summation 
convention of repeated indices. 

Let then A2 be a bounded domain of RN (N = 2 or 3), with smooth boundary C 
We want to find in 52 a velocity vector field u = {ui}, i = I,..., N, and a scalar function 
p such that 

?$!$+d =f;+.v&, i = l,..., N, 
3 2 

div u = c 3 = 0, 
i ax, 

(2.1) 

(2.2) 

z&(x, 0) = z&O(x), (2.3) 

ua /r = 0. cw 
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Let n and T be respectiveIy the unit normal and tangential vectors to the boundary r. 
Condition (2.4) may be split into 

26 * qr = 0, (2.5) 

IA * rjr = 0. (2.6) 

Condition (2.6) is the so-called no-slip boundary condition for viscous f!ow. For 
inviscid flow, we have to solve Euler’s equations that is (2.1) with Y = 0, (2.2), (2.3): 
and (2.5). 

We now introduce function spaces in order to write these equations in variational 
form. We define in a standard way (cf., e.g., Lions [16] and Teman 1181). 

It is the space of a square integrable function on B. We denote by 

the norm of a function z, in I?(@ and by 

the scalar product in L*(Q). Let then 

It can be shown that 

(2.11) 

defines a norm on W,l(Q). We shall use in the sequel vector fields u = (uJ, i = I,,.., X9 
where each component will lie in L*(Q) or in II&,~(!Z). We still denote by 

the norms of the vector in (L3(J2))N and (H,,l(Q))V, respectively. 
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We now consider a space of solenoidal vector fields, of which each component 
belongs to H,‘(Q), 

V = (u = {zlJ 1 ui E Ho1(J2), i = l,..., iV, div z, = O}. (2.13) 

This will be the standard space for the velocity field when solving (2.1)-(2.4). Multi- 
plying (2.1) by a test function ZI E V and integrating over Q, taking note that 
Jsl grad pv dx = - sap div v dx = 0, we get 

UE v, (2.15) 

u&x, 0) = &O(X). (2.16) 

This is a weak formulation of the Navier-Stokes equations, introduced by Leray [13]. 
It is shown for instance in [16] that there is a unique solution to (2.14)-(2.16) for a 
two-dimensional problem and at least one for the three-dimensional case. 

In order to get the existence of a solution for the inviscid problem, a fairly natural 
way would be to consider the behavior of a viscous solution when viscosity becomes 
small. It could be hoped that such a solution should converge to an inviscid solution. 
This is, up to date, an unsolved problem and some of the difficulties encountered might 
be related to the onset of turbulence. 

Nevertheless, we shall take as granted that such a convergence occurs. It is then 
clear that this cannot happen in V as inviscid solution do not satisfy the no-slip 
condition: It turns out that the natural space for inviscid solution would then be 

H = (24 = (Ui> / u, E P(Q), i = l)..., iv, div 24. = 0, u . Yllr = 01. 

This space may in turn be imbedded in a larger space, 

(2.17) 

H(div; Q) = {u = (ui> 1 ui E L2(Q), i = l,..., N, div u E L2(Q)}. (2.18) 

It must be pointed out that if convergence to an inviscid solution ever takes place, 
it is because functions of H that do not satisfy the no-slip condition can be approxi- 
mated in the norm of H (i.e., in L*(Q) norm) by functions of V which satisfy the no- 
slip condition. This is not the case for standard finite-element approximations of 
(2.13)-(2.15), (cf. Fortin [S], Teman [18], and Crouzeix-Raviart [7] for instance), 
unless the mesh is indefinitely refined, that is, in no practical circumstance. 

We shall then try to define approximations of (2.14)-(2.16) using Has a basic space. 
We shall have to weaken (2.14) before we can do so. Indeed for u E H, a(u,z+>/ax, 
will in general be meaningless, unless we allow for derivatives in the sense of distri- 
butions. 

Before doing so, we shall consider a finite-element approximation for H as our 
development will be made directly on a finite-element formulation. 
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3. _4PPROXIMATION OF H BY FINITE ELEMENTS 

We shall consider almost exclusively here the two-dimensional case. It is well know 
that a two-dimensional solenoidal vector field may be expressed as the curl, or 
rotational, of a stxeam function #, namely, 

lit comes out that for a simply connected (i.e., without holes) domain the stream 
function associated to u E H belongs to H:(Q). In fact for lfi E H:(Q), u = rot q!~ E 
(L2(Q))” and u . 1~1~ = a#/& Ir = 0. This last condition states that Z,!J must be 
constant on r. Thus, choosing Z/J such that #ir = 0 is just a convenient setup. 

From a finite-element point of view, the above development implies that it is a 
fairly easy task to obtain a discrete analog of H. Indeed, standard conforming 
elements enable us to get directly an approximation of Hoi(Q). Then taking the curl 
of such an approximation provides an approximation of H. 

Precisely, let, rh be a partition of D in triangular elements and 

lVTF == (&, / $n lK E P,(K), VK E T~ , #h continuous on a}, ( 3 21 

w;& == c+, I $h E I/T/,t $A Ii- = 01, 13:3; 

where P,(K) is the set of polynomials of degree k on the element K. These definitions, 
can be translated in a standard way for quadrilateral elements. We have, of course,. 
W& C+= HOI(Q). We now define 

HtL = (zfh / zlh = curl $!I , $h E lV$ ; (X4> 

this is an internal approximation of H (i.e., Hh c-+ H). ln our numerical computations, 
we used piecewise quadratic elements (P,) of standard type. We have continuity on 
element interfaces. Taking the curl gives out a function of H which is piecewise hneas 
(PI) and for which u . IZ is continuous on interfaces. This last fact is clear as +!~j& 
is the same from any side of element boundarier by continuity of #~ 

However, on the interface S, we may have a jump of u . T: as &J/i% is not con- 
tinuous. We have already signaled that H can be imbedded in a larger space H(div; 22). 
Finite-element approximations of this space have been considered by aaviart and 
Thomas [17]. They have shown that for such approximations, one must have 
continuity of u . n on element boundaries. lt also turns out of their analysis that our 
approximations of H are just the solenoidal vector fields in their approximation of 
H(div; Q). From this analysis it turns out that if we want to compute pressure (that 
disappears in (2.14)) it will be a discontinuous piecewise linear function. 

It is also possible to consider quadrilateral elements, and we shall see later that 
there might be some advantage to do so from the point of view of error analysis. If5 
for instance, we use a bilinear approximation (0,) for $I on rectangles, it is an easy 
thing to see that we get back the MAC cell for the discretization of ZI. 
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Remark 3.1. For a domain with holes (flow around a body), we only know that 
# is constant on every connected component of the boundary. If we fix up an arbitrary 
value of 4 on r,, , the value on r, is then an unknown of the problem. Numerically 
we define an extra basis function for the discrete stream function zJ~ , such that #I~ = 1 
at every node on I’, and tih = 0 for other n nodes. We shall come back to this point. 

Remark 3.2. In a three-dimensional problem it is no longer possible to use stream 
functions to define a solenoidal vector field: at least in a one-to-one way. Thus we 
have to use directly a discretization of H(div; Q) and consider the subspace of 
solenoidal fields. It is a simple exercise to verify that the constructions of Raviart and 
Thomas can be extended to three-dimensional cases. Although a numerical study 
remains to be done, there is no theoretical reason why the techniques developed here 
should be limited to a two-dimensional model. 

4. A DISCRETE FORMULATION FOR EULER EQUATIONS 

We shall use here some ideas developed by Lesaint [14] for the approximation of 
linear hyperbolic problems. (See also Lesaint-Raviart [15]). An interesting feature 
of the scheme is the use of upwind derivatives which stick to the hyperbolic nature 
of the problem. The ideas developed here have been already presented in Fortin [9] 
and Thomas-Set [ 191. 

We have in fact to deal with the nonlinear convective terms. Let then K be an 
element of the discretization considered and let us write 

The basic idea of Lesaint’s method is to split Mint0 two parts. 

aK_ is the part of aK where u . n < 0, that is, aK_ is upwind of K. 
aK+ is the part of aK where u . n > 0, that is, aK+ is downwind of K. 

Let us remark that as u * n is continuous on interfaces, the definition of aK+ is 
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consistent from one element to another. Let us consider two triangles (for instance) 
which share a side S. We then define on S 

II+ js is the downwind value of u on S, 
a~- js is the upwind value of u on S, 

or precisely on an element K. 

UjBK = 
I 
u+ on aK+ , 
ic on 21%~~ . (4.2) 

Can S we then have two vaIues of u, U+ and u-. Following Lesaint, we then write as a 
variational formulation for Euler equations 

Integrating again by part the nonlinear term in (4.3), we obtain, using the definition 
of u+ and U-, 

[uJ 13K = 24yt - u:nt = jump of ui On aK. 
(4.4 , 

Here tlFt and aint evidently denote on aK the value of u at the exterior and the interior 
of K. We see that (4.4) introduces the jump of Ui on the upwind part 2.K of 227. 
Using the jump evidently tries to take into account that the derivative of a discon- 
tinuous function contains Dirac masses at the point of discontinuity. 

This scheme can be made somewhat more general. It was suggested to us by 
Raviart to use instead of (4.3), 

(u’, v) - ; ( jK (uiuj) 2 dx - s,, u . n((l - CX) ui- + cm++) vi do) 

= J& dx, s VVEH~, (42) 
R 

or equivalently 
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For a = Q we clearly get a “centered” discrete derivative. For cx = 1 we get back (4.3) 
and for a! < Q we have downwind derivatives which clearly lead to an unstable 
method. We now show that for 01 > + this scheme is dissipative. Indeed making v = u 
in (4.6) it is a matter of tedious computation to get, forf G 0, 

; $ 1 24 IF2 + (2@-; l) c (1 ([UJ” + [r4]~)u * n do) = 0. 
s s 

(4.7) 

Here the sum is taken on all interfaces S and n is chosen such that u * n be positive. 
For (II > $ the second term is positive and we then lose energy with time. As u . II is 
continuous [Q]” + [u2]” reduces to [u . ~1”. Thus dissipation is related to jumps of 
tangential velocity on interfaces. 

5. ERROR ANALYSIS OF THE METHOD 

We shall not attempt here to present a complete analysis, which is anyway out of 
reach because of the nonlinearity of the problem. We therefore restrict ourselves to 
a linearized model. Then let 

a = {Qi>, i = l,..., iV, (5.1) 

be a known solenoidal vector field such that a . n lr = 0. We consider a model steady- 
state problem. (0 is a strictly positive constant) 

div u = 0, (5.3) 
u . n lr = 0, U&C, 0) = uio@) known. (5.4) 

It is clear that such a problem can be readily approximated by the finite-element 
method of Section 4. 

We suppose that the discrete velocities &, E Hh are piecewise polynomial functions 
of degree k. In our numerical examples (Section 9), k is equal to 1. From Lesaint [14] 
and Lesaint-Raviart [15] we deduce that we can get an error estimate on [ u - uh 1, 
(in (L2(Q))y>, which is O(P) where h is the mesh size. This can be extended to O(/Z~~+~/~) 
for special cases. This result is not optimal in the sense that one could expect O(P+l) 
for an error estimate in L”(Q) norm. 

Lesaint [14] shows that the result can be made optimal if the elements are quadri-- 
laterals such that any element has only two “lighted sides” (i.e., sides where a . n < 0). 
For triangles, one should have that any element has one side parallel to the direction 
field a, which is a quite strong requirement. This analysis makes think that quadri-, 
laterals would be more natural elements for this kind of approximation. 

Remark 5.1. The error estimates of Lesaint [14] are derived when 01 = 1. When 
we have cx > 4, it is easy to check that the same results hold. 
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6. TIME DISCRETIZATI~N AND COMPUTATIONAL ASPECKS 

6.1. General Remarks 

In order to complete the description of the method, we must now discretize the 
time dexivative and describe some computational features. To simplify the exposition, 
we shall denote in the sequel for M, v, IV E Hh . 

(6.1) 

We now consider, to approximate (4.3), a predictor-corrector scheme with O(AP) 
accuracy. The computation proceeds as follows: 

6.1. I. Predictor: Leap-Frog Scheme 

Let ZP denote the value of the velocity at time t = n At. If EP and LP-~ are known, 
we compute a first guess ug” of @+l by 

61.2. Corrector: Gear’s Scheme 

The predictor tit+’ being know, we define a~;:: from z$+” through 

This iteration is stopped as soon as, E being small, 

I al;:; - al’;‘” j < E. (624) 

This is, of course, a fixed-point procedure ~t;l!f = sl(uE+l), and convergence will 
require the condition /I 7”(u”+l)l\ < 1. For this particular case, this implies that a 
Courant-Friedrichs-Levy-type condition must be set on At, namely, in first approxi- 
mation, 

where n(K) is the diameter of the largest inscribed circle for triangle (or element) K. 
The constant CO depends on the type of elements used and is rather hard to deter-mine 
a priori. Of course, the smaller the At, the faster the convergence. In practice, this can 
be used to develop an automatic time-step strategy. For instance one way is that (6.4) 
should be verified for k = 1. Then At is reduced whenever this fails or increased If 
(6.4) is systematically verified with k = 0. 
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The predictor-corrector scheme cannot be used for the .first step. We used as a 
starting-up procedure, a Crank-Nicholson step. 

& (28 - z/o, 21) + ; b&8, 22, u) + ; b&P, uo, c) = (f, u), Vu E Hi, . (6.6) 

This nonlinear equation is solved by the same kind of iterative procedure as in (6.3). 
This time-discretization procedure is, of course, only one possible choice among 

others. It would also have been attractive to use an implicit Runge-Kutta scheme 
(cf. Crouzeix [6]). A conceptual advantage is that such scheme can be deduced from 
a time-space finite-element discretization. (cf. Lesaint-Raviart [15]), thus giving a 
similar treatment to both time and space derivatives. 

From a computational point of view, it must be pointed out that computing ~2:; 
in (6.3) or u:+’ in (6.2) implies the resolution of a discrete Dirichlet problem for the 
stream function # nfr. Indeed our space Hh has been defined by taping the curl of a 
piecewise quadratic conforming approximation W$b for #. We thus have 

@ +l, 0) = (rot #?+I, rot 4) = --(daijGn+l, #J>, v+ E w$ . (6.7) 

It is possible to factorize the discrete Laplacian matrix once and for all using 
Cholevsky’s algorithm. A more precise discussion of this point and details on the 
computation of nonlinear terms may be found in Thomasset [19]. In particular, this 
references treat the case of domains with holes where a slight modification of 
Cholevsky’s algorithm can be used. 

6.2. Numerical Results, Euler’s Equations 

We tested the above scheme on the two problems described below in order to 
bring into evidence the effects of artificial damping. 

6.2.1. Problem I: Evolution of a “Gaussiarz Vortex” 

Let 9 be the unit circle (r2 = .x2 $ y2 < 1) and initial conditions be given by 

9xX1 * x2 3 0) = exp(-IOOP) - exp(-100). (6.8) 

The initial streamlines are shown on Fig. 1. We require # = 0 at the boundary and 
let the system evolve. It is an easy matter to check that the exact solution should 
remain constant with respect to time. The number of triangles is 400 (mesh size l/IO) 
and the time step At is 10-3. Computations were performed with various values of a. 
Figure 2 shows the streamlines at time t = 0.082 for (II = 1 and Fig. 3 shows the 
similar result with a: = 0.51. We see that counter vortices are developing due to 
artificial viscosity. 
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STREAM LINES 
TIME T = 0. VlSCOSlTY = !I. 

INITIAL STATE 
FIGURE 1 

STREAM LINES 
TtME T = 0.830&1 VISCOSITY = 0 a = 51 

FIGURE 2 

STREAM LINES 
TtME T = 0.82051 VISCOSITY = 0 a=? 

FIGURE 3 

We also plot on Fig. 4 the variation of the kinetic energy, 

(6.9) 

versus time t. As expected, the damping is by far more important for x = I than for 
01 near 0.5. Numerical experience shows that CL = 0.5 leads to instability. 
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r 
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6.2.2. Problem II: Flow past a Comer 

The corner domain is shown in Fig. 5. In the shaded region, we assume a body 
fQIXX 

ifx, > 1 and t < 4Ar: 

otherwise. 

The value of L3t was 1O-2 and 168 triangles were used. The initial state is shown in 
Fig. 6. The fluid is at rest behind the corner. Figure 7 presents the stream lines at 
time t = 6.8 for OL = 1. We see that a counter vertex has grown in the upper left 
region past the corner. showing a numerical viscosity effect. The solution is steadily 
decreasing, remaining self-similar, after this time. 

FLOW FAST A CORNER 

FIGURE 5 

In conclusion we may state that the present method allows stable computations of 
inviscid flow. Numerical viscosity implies that it will be convenient to compute 
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smooth solutions. However, for highhry irregular solutions thlit could be expected 
with some initial conditions it is probable that damping will be much too large to get 
a’ very good approximation. 

STREAM LINES 

TIME T = O.OlOEOO VISCOSITY = o 

FLOW PAST A CORNER INITIAL STATE 

STREAM LINES 

TIME T = 0.103EO2 VISCOSITY = 0 

-1 

FLOW PAST A CORNER 
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7. STEADY CREEPING FLOW THROUGH MIXED METHODS 

In order to justify the treatment of viscous terms we shall use in the full Navier- 
Stokes equations, we consider first the classical steady-state Stokes problem which 
describes a viscous flow at very small Reynolds number. Nonlinear convective terms 
may then be neglected and we have to solve a linear system. 

-4~ + gradp = .f, i-7 8) \:.“/ 

div u = 0, (7.2) 

Lf IT = 0. (7.3) 

Equations (7.1)-(7.2) must be satisfied in a domain AZ C RN (N = 2 or 3j. We suppose, 
to simplify the exposition, that .Q is bounded, simply connected, and that T’ = 3-Q 
is smooth enough (for instance, Lipschitzian). When N = 2, it is well known that this 
problem is equivalent to a biharmonic problem. Let $ be the stream function such 
that u = curl 21 (==V s #). Then solving (7.1)-(7.3) is equivalent to solving 

(7.5) 

This remark wiil be important, for we shall rely, to approximate (7.13-67.3) on 
classical methods for (7.4)-(7.5). However, the final result will not be restricted to the 
two-dimensional case. Mixed methods are related to saddle-point variatio& 
principIes. 

To avoid long preliminaries, we shall introduce them as a mere reduction ol a 
second-order problem to a first-order system. 

In this section we shall analyze a mixed method that will be based on the fcl1owln.g 
identity for the vector Laplacian operator 

-4u = curl curl II - grad div 21. (7.6:) 

Using (7.2) and (7.6) and setting w = curl U, we can then write @I)-(2.3) as a 
system; 

curl w + grad p = f5 (7mr) 

w = curl II, (:Ds) 

div ZI = 0: (7 0) .i ~J, 
11 Ir = 0. (7.10) 

Using the function space V defined in Section 2, we now write these equacioris in 
weak form, multiplying (7.7) by o E H and (7.8) by 4 E P(Q). We then have, 

(curl w, r) - (f, 2’) = 0, V’D E ff, 

(w, 4) = (curl 11, #I) = (u, curl 4) + S, if . P# rto 

= (tl, curl +), v+ E W(i2). 
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IA US recall that u E H means div u = 0 and u .IZ = 0. The no-slip boundary 

condition is thus included in a weak form in (7.12). It can be shown that the unique 
solution to (7.1)-(7.3) is also a solution to (7.11)-(7.12). However, it must be pointed 
out that (7.1 I)-(7.12) is a weaker formulation of the problem as it no longer requires 
ui E H&2). 

If we now restrict ourselves to the bi-dimensional case, we can write u E H as 
u = curl #,, , &, E Hoi(Q). Then we have 

(curl w, curl 43 = (f, curl +,), VA f HoWI, (7.13) 

6-4 4) = (curl #, curl $)>, V# E fW3, (7.14) 

or more classically, neglecting boundary conditions, 

-A# = w, (7.15) 

dw = curlf (7.16) 

with appropriate boundary conditions. 
The numerical approximation of (7.13)-(7.14) has been studied in Ciarlet-Raviart 

[S] and algorithms for solution are given in Ciarlet-Glowinski [4] and Glowinski- 
Pironneau [Ill. In the two-dimensional case, the discretization of [5] is strictly 
equivalent to the one we have used and error analysis results may be obtained directly 
from their results. 

The discretization proceeds as follows. We consider the space Whk of Section 3 
of conforming elements approximating s(Q). We then have a space of discrete 
functions which are pieccwise polynomials of degree k on each element and which are 
continuous on element interfaces. Wh,k is the space of discrete vorticities wh . 

Let W,“, be the subspace of FVhB such that #h E W& iff JLh Ir = 0. 
Then Section 3, we define Hh by taking 

Hh = {v, 1 u,~ = curl +I& , & E W&j. 

The discrete problems are then 

(curl wh , uh) - (f, %) = 0, vvh E & , 

Iwh , 4h.l = (uh , curl &J, V$h E Whk, 

or equivalently, 

(7.17) 

(7.18) 

(7.19) 

(curl wh , curl yh) = (f, curl ~3, 

(% , h) = (curl +h , curl #d, v& E wh’, (7.21) 

lVh, E W& “, #h E ry,h. (7.22) 

It must be noted that, whenever one has built a discrete space Hh C H in a consistent 
way, (7.18)-(7.19) are still valid for three-dimensional problems. The use of #h is 
here only a convenient and very simple way to get HI& . 
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The error analysis of Ciarlet and Raviart shows that the precision of this scheme is 
O(hk:-l) (where F, is the mesh size). This results holds for j 10 - uh jLZ(Dj and 
I OJ - % /LW * 

The expected estimate would be O(P). There is a loss of precision with respect to 
the degree of polynomials used. If one uses as in the present numerical computations 
of Section 6, piecewise quadratic polynomials, the expected precision will be O(%i) 
instead of O(?P). Numerical evidence shows that problems are restricted to values of w 
along the boundaries and that values of #, U, and w away from walls are better than 
the predictions of error analysis (cf. Bourgat [l]). 

Remark 7.1. We have considered up to now the case of inhomogeneous boundary 
conditions. It is a simple task to introduce nonhomogeneous tangential boundary 
condnions. Setting, instead of (7.21), 

(7.23) 

implies the solution has to satisfy 

in a weak sense. It is also possible to impose boundary conditions on o. This is; 
of course, seldom of any practical use. 

Remark 7.2. It appears that for N = 2, the method is just a rewriting of a standard 
mixed method for the biharmonic problem. It is also possible to adapt such mixed 
methods as the Hermann-Johnson scheme (cf. Johnson [12] and Brezzi-Raviart [2]) 
to the solution of Stokes problem. Such an approach has been suggested in Fortia 191. 
The basis of the development is to write (7.1) as 

-$$-+g=,i, (7,25) 

aud then to approximate pij in a proper way. A theoretical advantage is that the 
expected precision is now optimal with respect to the degree of polynomials used in 
the finite-element approximation. We do not develop further this point as we have no 
numerical results, up to date; this method is heavier to handle than the previous one. 

Remark 7.3. From a physical point of view, it would be natural to use tbe stress 
tensor (Tag instead of pij in (7.25)-(7.26). Some problems arise however in &ite- 
elements approximations, with respect to the symmetry of s<j . This can be probably 
be overcome and the interest of such approximations would be to handle directly 
boundary conditions on crij ) which are quite often encountered. 
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8. A MIXED METHOD FOR THE NAVIER-STOKES EQUATIONS 

We are now able to state a complete scheme for viscous incompressible flow that 
uses solenoidal elements for the velocity vector field, upwind derivatives for nonlinear 
terms, and that allows a discontinuity of the tangential component of velocity on 
elements interfaces. This scheme uses the discretization of Euler’s equations of 
Section 4. In semidiscrete form, we may write 

= CL 3 Vi), 

(oh. , q&&j = (uh , curl &?, V’d7‘ E w, * (8.2) 

It must be noted that u, E Jr, implies uIL . y1 h- = 0. Condition (8.2) implies uh * 7 h- = 0 
in a weak form. Non-homogenous boundary conditions can easily be implemented. 

The time discretization we used in our numerical computations was the same as the 
one discussed in Section 6 for inviscid flow. We thus used an implicit scheme. Corrector 
iterations had now to be done on both (8.1) and (8.2). We point out that any time 
discretization must be implicit in wh if the no-slip boundary condition is to be satisfied. 
Following Glowinski-Pironneau [II] it should be possible to devise much better 
solution methods to replace the rude corrector iteration. This is the object of current 
work and is related to the setting of an efficient steady-state solver. In present compu- 
tations, steady states have been obtained through a time-dependent problem. Fol- 
lowing Remark 7.2 a similar scheme has been proposed in Fortin [9], using pfj T= 
au,/&, as a “dual” variable. 

Remark 8.1. An important feature of this kind of scheme is that viscosity or 
dissipation appears as a separate mechanism which is simulated through the use of 
vorticity or another auxiliary field. This makes very easy the computation of non- 
Newtonian flows as for instance, only the law relating wh to u has to be changed in 
(8.2). Similarly it would be quite simple to introduce an extra viscous term modeling 
turbulent dissipation. 

9. NAVIER-STOKES EQUATIONS: NUMERICAL RESULTS 

9.1. Square Wall-Driven Cavity 

Q is the unit square: 10, l[ x IO, I[ (Fig. 8). We assume the following boundary 
conditions: 

$x1, x2) = (i), if xe < 1, 

U(% , x3 = ; 3 0 if x2=1. 
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s 1 

FIGURE 8 

Thus, rhe nominal Reynolds number is Re = I/V. We used regular meshes, of which 
characteristics are given in Table I. (It is divided into iV equal squares, each square 
being divided into 2 triangles.) 

TABLE I 

A = l/8 h z.z I!12 

Number of 
triangles 

Number of 
vertices 

Number of 
mind side nodes 

Number of unknowns 
for taplace’s equation 

Bandwidth for 
Laplace‘s equation 

Bandwidth for 
ca equation 

Average computer time 
per time step 

Totai number of unknowns 

128 

Sl 

20s 

225 

37 

42 

1.9 set 
(IBM-370-168 j 

513 

288 

169 

456 
(Number of unknown 

529 values of $k) 

53 

58 

2 min, 10 set 
(CCII-IRIS 30) 

3144 

Note. The use of a regular mesh does not take full advantage of the possibilities 
of the finite-element method; however, this choice allows 

(I) an easy comparison with finite-difference methods; 

(2) a study of convergence when the mesh size h = l/A’ is decreased. 
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We tried several values of viscosity: v = 1O-2, 10-3, lo-*; we sum in Table II the 
results of computations. 

TABLE II 

Y 10-Z IO-3 IO-’ 

h = l/S At 0.36 0.03 0.03 
a 1. 1. 1. 

Initial values Fluid at rest Solution for Solution for 
II = 10-z v = 10-S 

Number of 
time cycles 500 650 1622 

h = l/l2 At 
a 

Initial values 
tim 

Number of 
time cycles 

- 0.02” 0.02 
1. 1. 

- Moving fluidb Solution for 
Y = 10-s 

- 850 2000 

a Maximum At allowed. 
* $(x1 , x2 ; 0) = -2.7x1(1 - x,)x,“(l - x2). 

We plot in Figs. 9-12 the velocity profile along the midline x1 = Q. (The first 
component u1 is well defined along this line because it is a boundary line between 
triangles in our mesh, u1 being the normal velocity.) We compare the results with 
some finite-difference schemes: 

-for u = 1O-2 with Burggraf’s results [3]; 
-for v = 1O-3 with Fortin et al. [IO]; 

-for v = lo-” we do not IUIOW of any computation for the same problem; we give 
as an indication the limit given by Burggraf [3] when v + 0. On Fig. 12 we show the 
influence of 01. The streamlines are shown on Figs. 13 (v = 10m2, h = l/8), Fig. 14 
(u = 10-3, h = l/12), and Fig. 15 (v = 10-4, h = l/12), and the vorticity lines on 
Figs. 16 (V = IO-“, h = l/S), Fig. 17 (v = 10-3, h = l/12), and Fig. 18 (v = 10-4, 
h = l/12). 

Remarks. (1) The dotted lines in Figs. 14 and 15 stand for the line # = 0 and 
show the existence of counter vortices in the corners; such vortices are also present in 
Fig. 13 (v = lo-3 although the line z,L = 0 is not plotted. 

(2) The process was stopped when the difference between the degrees of freedom 
of # at times y1 dt and (nl + 1) dt was less than 10-5. 
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VLSCOSITY: Y = 10-2 a = 1. 
VELOCITY PROFILE ALONG K , = .5 

COMPARED WITH BURGRAAF’S RESULT 

Y 

- This sZudy 

x BURGRAAF (1966) 
( h = %I) 

0. .5 1. 0 
FIGURE 9 
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31 
VELOCITY PROFILES ALONG H I = .5 

.5 1. l U 

FIGURE 10 
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SQUARE WALL-DRIVEN CAVITY 

VISCOSITY: v = 10-4 a= 1. 

x 

_--- h =‘a 

r 

THIS 

h = ! ‘! 2 STUCY 

c 

X U--O (BURGRAAF’S 
LlMlT RESJLI) 

FIGURE 11 
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SQUARE WALL-DRIVEN CAVITY 

VISCOSITY: Y = 10-q 

MESHSIZE: h = !,iz 

VELOCITY PROFILES ALONG ?t I = .5 

I DAMPING PARAMETER 
I 

FIGURE 12 
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STREAM LINES 

TIME T = 0.505EOl VISCOSITY = O.OlOEOO 

FIGURE 13 

STREAM LINES 

TIME T = 0.164E02 VISCOSITY = O.:OOE-02 

‘... 
----___ ,~I i 

FIGURE 14 
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STREAM LINES 

TIME T = 0.471E + 2 VISCOSITY = O.lOOE-3 

FIGURE 15 

ISO-VORTICITY LINES 

TIME T = 0505EOl VISCOSITY = O.OiOEOO 

FIGURE 16 
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ISO-VORTICITY LINES 

TIME T = 0.172Et 2 VISCOSITY = O.lOOE-2 

I 
I 
i 

I 
__-__ ----A 

FIGURE 17 

lSO-VORTICITY LINES 

TIME T = 0.472E + 2 VISCOSITY = O.?OOE-3 

FIGURE 18 

581/3rjr-10 
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From these experiments a few conclusions may be drawn. First, the method 
proposed permits a fairly accurate computation at large Reynolds number with a 
relatively crude mesh size. The behavior for Re + co can be expected to be correct 
if mesh is refined. The main problem is to devise an efficient way of computing steady- 
state solutions without going to an unsteady procedure. This is the object of current 
work and many possibilities are open. 

9.2. Flow past a Cylinder 

An obstacle C, (a cylinder of unit diameter) is placed in a fluid with uniform 
velocity at infinity. This problem is treated as being two dimensional. We assume that 
the influence of C, is negligible at points on a circle C, , with same center and diameter 
10. 

We take as B the annular region between C, and C, . On C, we have the boundary 
conditions 

1 u=u,= 0 0’ 

y%G 3 x2> = x2 - 
(9.1) 

On the obstacle C, , we just have 

1,4 G #(C,) = unknown constant. 

Thus, the value of # on C, is an unknown of the problem, to which corresponds to 
Eq. (9.1) (see Thomasset). As an initial value we took the irrotational solution, 
such that. 

-A$ = 0, in Q, 

4 ICI = constant, 

wlJ-2)lc2=x2- 

TABLE 3 

Number of triangles 
Number of vertices 
Number of midside nodes 
Number of unknown values of 4 
Number of degrees of freedom of w 
Total number of equations 
Bandwidth for Q equation 
Bandwith for w equation 
Average CPU time for one time cycle 
Time step: dt = 0.1, a: = 0.55; u = 0.02. 

144 
84 

228 
265 
312 
577 
69 
72 
40 set (IBM 370-168) 

a about 40 corrector iterations were performed at each time step. 
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STREAM LINES 

TIME T = 4.5000 VISCOSITY = 0.02 

STEADY SYMMETRiC SOLUTION 

FIGURE 19 

ISO-VORTICITY LINES 

TIME T = 4.5 VISCOSITY = 0.02 
9 

L’ j,,, 

d 

STEADY SYMMETRIC SOLUTION 

FIGURE 20 

U7e used a nonregular mesh, whose parameters are listed in Table 111. We firsa: 
obtained a stationary symmetric solution (Fig. 19: streamlinesl; Fig. 20 vorticity lines). 
Hn order to break the symmetry, we perturbed this solution, multiplying by a factor sf 

1 the counter vortices are not plotted, but do exist. 
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10 the value of I/J at a point in the wake. After about 10 time cycles we obtain a 
Von Karman alley of eddies (Fig. 21). 

The vortices in the Von Karman alley are seen to be very rapidly damped; this 
should be considered as an undesired influence of the downstream boundary C, ; 

STREAM LINES 

T = 5.7000 

T = 6.2000 

T = 7.7000 

T = 8.2000 

T = 5.7000 .T = 8.7000 

T = 7.2000 T = 9.2000 

FIGURE 21 
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we can see also (Fig. 21) that the influence of the obstacle cannot be considered negli- 
gible at downstream points on C, . This suggests than the computation should be done 
again with a downstream boundary C, at a greater distance from the obstacle (C, with 
other boundary conditions on $); this will be reported in a subsequent paper. 

STREAM LINES 

T = iO2000 

T = 10.7000 

T= il.2000 

T = 11.7000 

T = 12.2OiN 

T =12.7000 

T= 13.2000 

FIGURE 21 (continued) 



144 FORTIN AND THOMASSET 

10. CO~~MENTS AND CONCLUSION 

At each time cycle we solved separately Eqs. (8.1) (4 equation) and (8.2) (w equation) 
by a Cholevsky’s algorithm for band-structured matrices (subroutine MCHB from 
IBM Scientific Subroutine Package). This requires the storage of two large matrices 
in factorized form; for instance, for the flow past a circle we had to store respectively 
16,065 and 20,148 words. 

Furthermore, the corrector iterations impose a stability condition on dt. As 
expected we found this condition more and more straining as the mesh size is 
decreased. For a flow around an airfail with 60 triangle sides on the airfail and 1080 
triangles we had to take dt = 1O-5, which is too small to reasonably allow compu- 
tations of practical interest. We are now testing some other solving procedures to 
make the overall process more efficient. We want to emphasize that the presented 
results are tests problems selected to test the accuracy of a discretization procedure. 
We are fully aware that much work remains to do in order to improve the efficiency 
in computation. The method studied implies nonstandard problems to be solved and 
it is clear that we may expect considerable improvements in the future. We are con- 
fident that finite-element methods of the type we have described will permit compu- 
tations of viscous flows for fairly large Reynolds number with improved accurracy, 
all other things being equal. The authors want to thank MM. Perrier, Periaux, Poirier, 
and Mantel of “Les Avions Marcel Dassault-Breguet Aviation” for their help in 
programming facilities and computer time. 
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